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SUMMARY 
The research reported herein involved the study of the transient motion of a system consisting of an 
incompressible Newtonian fluid in an annulus between two concentric, rotating; rigid spheres. The primary 
purpose of the research was to study the use of a numerical method for analysing the transient motion that 
results from the interaction between the fluid in the annulus and the spheres which are started suddenly by 
the action of prescribed torques. The problems considered in this research included cases where: (a) one or 
both spheres rotate with prescribed constant angular velocities and (b) one sphere rotates due to the action 
of an applied constant or impulsive torque. 

In this research the coupled solid and fluid equations were solved numerically by employing the finite 
difference technique. With the approach adopted in this research, only the derivatives with respect to spatial 
variables were approximated with the use of the finite difference formulae. The steady state problem was also 
solved as a separate problem (for verification purposes), and the results were compared with those obtained 
from the solution of the transient problem. Newton’s algorithm was employed to solve the algebraic 
equations which resulted from the steady state problem, and the Adams fourth-order predictor-corrector 
method was employed to solve the ordinary differential equations for the transient problem. Results were 
obtained for the streamfunction, circumferential function, angular velocity of the spheres and viscous 
torques acting on the spheres as a function of time for various values of the system dimensionless parameters. 

KEY WORDS Rotating spheres Viscous flow Incompressible fluid 

INTRODUCTION 

The problem involving the steady state motion of a viscous incompressible fluid contained in an 
annulus between two concentric spheres which rotate about a common axis with an angular 
velocity which has been prescribed a priori has been the subject of extensive research in 
engineering, meteorology and geophysics. Proudman,’ Stewartson,2 Carrier,3 Haberman4 and 
Munson and Joseph’ obtained an approximate analytical solution to the problem involving the 
flow in an annulus between two spheres rotating with prescribed constant angular velocities. 
Pedlosky6 extended the problem to include temperature effects. Dennis and Singh7 solved this 
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problem by employing a quasi-analytical method; i.e. they expanded the streamfunction, vorticity 
and circumferential function in a series of orthogonal functions and then solved the resulting 
system of ordinary differential equations numerically. Greenspan,' Schultz and Greenspan,' 
Schrauf" and Bar-Yoseph et aE." solved this problem by employing the numerical finite 
difference and finite element methods. 

Experimental results have been obtained for the steady state problem by a number of 
investigators. Sorokin et a1.,I2 Khlebutin,' Zierep and Sawatzki,I4 Munson and Meng~turk , '~  
Wimmer,'6,17 Nakabayashil' and Waked and M u n ~ o n ' ' ~ ~ ~  studied the problem involving flow 
in an annulus between two spheres where either the inner or the outer sphere rotates with 
constant angular velocity. Munson and Douglas2' obtained experimental results for the problem 
where the inner sphere is subjected to a prescribed oscillatory (sinusoidal) motion. 

The problem involving the transient motion of a fluid contained in an annulus between two 
concentric rotating spheres has received less attention in the literature. P e a r ~ o n , ~ ~ . ~ ~  Dennis and 
Q~artapelle,'~ Krause and BartelsZ5 and BartelsZ6 employed the finite difference method to 
obtain a solution to the transient problem for the case where one of the spheres is suddenly 
rotated with a prescribed constant angular velocity. The study of this problem for a sphere 
rotating in an infinite medium has been conducted by I l l i ngw~r th ,~~  Benton," Barrett," Dennis 
and I ~ ~ g h a m , ~ '  Dennis et aL31 and Takagi3' To date, there has been no published research 
involving the transient motion of a viscous fluid contained in an annulus between rotating 
spheres where the angular velocities of the spheres is not prescribed a priori; i.e. where the motion 
of the system is a result of the coupling (interaction) between the fluid and the spheres. Recently, 
Gagliardi33 studied this problem for low Reynolds numbers by employing the perturbation 
technique. 

The primary purpose of this research was to study the use of a numerical method for analyzing 
the transient flow of a viscous incompressible fluid contained in an annulus between two spheres 
which are started suddenly by the action of prescribed torques instead of prescribed angular 
velocities. The equations of motion for the rigid body and the fluid were expressed in terms of a 
streamfunction (Y), a circumferential function (In) and a vorticity function (c) and then reduced to 
a system of ordinary differential equations by employing the finite difference method. The Adams 
fourth-order predictor-corrector method was employed to solve these equations. The steady state 
problem was also solved as a separate problem (for verification purposes) by employing Newton's 
algorithm. Results for Y, In, angular velocities of the spheres, viscous torques and fluid angular 
momentum were obtained as a function of various values of the dimensionless parameters. 

BASIC EQUATIONS 

The system under study consists of an isothermal, incompressible, Newtonian fluid contained in 
an annulus between two concentric rotating rigid spheres (see Figure 1). The inner and outer radii 
of the annulus are R: and R: respectively. The spheres are assumed to be rigid and constrained to 
rotate about the z*-axis under the action of externally applied torques. 

The fluid velocity components in the direction of the spherical co-ordinates r*, 8 and 4 are 
given as u*, u* and w* respectively. These components are independent of the co-ordinate 4 due 
to symmetry about the spin axis. The transformation equations which relate the fluid velocity 
components to the streamfunction (Y *) and circumferential function (In*) are given as 
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I 

I 

Figure 1. Notation for flow in spherical annulus 

where 
q = a v *  /ao, Y ' I c , = ~ \ Y * / ~ ~ * .  

The form of equation (1) for u* and u* is such that the continuity equation is automatically 
satisfied. The system variables in this equation are expressed in dimensionless form by employing 
the transformations 

t*v* 
r = r*/R,*,  t = -  R,*' ' O= o*/w,*, Y =Y*/cI$R,*~, R = n*/o,* R:', (2)  

where v* is the kinematic viscosity, R: is an arbitrary reference radius and w,* is a reference 
angular velocity. 

The equations of motion for the fluid are obtained by taking the curl of the Navier-Stokes 
equations. This yields 

[Y,,r cos 0 -Yge sin 131 = D2[, +- 2Re, i 
r3 sinZ O 

C = D 2 Y ,  

where 

[ = [*/o,* R,* ([* is the vorticity function), 

Re, =a,* RZ2/v* (Reynolds number based on R,* = R:, q = 1,2), 

a 2  1 a2 cote a DZ,-+- _ _ _ ~ -  an 
?'=at' ar2 rz ao2 r2 80' 

ai L=s 
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The steady state equations of motion for the fluid are obtained from equation (3) by dropping the 
transient terms. 

The equations of motion for the inner and outer spheres rotating under the action of applied 
torques are 

m4,$+Jq Sdl(lCR,,(R,4,[Rq, 8, t j  - z Q [ R ,  6, t ] ) ]  sin8 dB=N,, (44 

where 
J,=( - f)94spfR,*5/1,*, 

with pf the density of fluid and I: the mass moment of inertia of the inner or outer sphere; 

Nq = N,* Re, Jl:o,* ' , (W 

R,  = R t  / R $ ,  w,=w,*/w;, ( 4 4  

with N: the external torque applied to the inner or outer sphere; 

with w: the angular velocity of the inner or outer sphere and q= 1,2 for inner and outer spheres 
respectively. 

The equations which result from the symmetry of the flow in the annulus are 

Q[r, 0, t ]  = 0, (54 
fi,err, nJ2, t1=4 

Y[r, 0, t J =0, 

"[r,  nJ2, t]=0, 

rcr, 0, tl =o, 
"r, n/2, t ]  = 0, 

XR, ,  8, ~I=Y,,,cR,, 8, t i  q = u .  

Y CR,, 8, ti = 0, 

Y.*CR,, 0, tI=4 

The conditions which must be satisfied at the interfaces of the fluid and solid are 

Q[R,, 6, t ]  =wqRq sin' 8, q = 1,2. 

The fluid inside the spherical annulus is assumed to be initially at rest; hence the initial 
conditions for the fluid are 

QCr, 8, O ] = u l [ r ,  8, O ] = O .  (7) 
The cases which are considered in this research consist of the following, or combinations of the 

following: (a) the inner (or outer) sphere is started suddenly from rest with a prescribed constant 
angular velocity (i.e. step function input), with the opposite outer (or inner) sphere either fixed or 
given a different prescribed angular velocity; (b) the inner (or outer) sphere is started from rest by 
the action of a prescribed impulsive torque, with the opposite outer (or inner) sphere fixed or left 
free to rotate. The reference angular velocity in case (a) was chosen to be the larger of the two 
prescribed angular velocities. Note that for this case, equation (4a) is not required since w,* is 
prescribed. The reference angular velocities for cases involving the prescribed impulsive torque 
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are given as 
I 

wf = N:/I:, (8) 
where N c  is the magnitude of the torque impulse. 

The viscous torque (q) acting on the inner or outer sphere can be evaluated by integrating the 
shearing stress ($,) over the corresponding spherical surface. The expression for the dimen- 
sionless torque is given as 

T,=$ [: [R,(R,a,,[R,, e, ~ I - ~ R c R , ,  e, ti)] sine do, (9) 

where: 

and q= 1, 2 for the inner and outer spheres respectively. 
The fluid angular momentum (L,) about the spin axis was employed in this research as a 

quantitative measure of flow. The expression for the dimensionless angular momentum (L,) is 

where 

METHOD OF ANALYSIS 

Finite digerence model 

In this study, the finite difference method was employed to solve the mathematical model given 
in equations (3H4). For this purpose, the domain was discretized by a uniform mesh as shown in 
Figure 2. The discretized independent variables ri and O j  are defined as 

ri=(i-1)Ar+rI2, i = l , 2 , .  . . , N+1, (114 
ej=o.- i)Ae, j =  i , 2  . . . , L +  1, (1lb) 

where 

The spatial derivatives of CA, Y and at all boundary and first line interior nodes (see Figure 2) 
were approximated by employing the fourth-order forward and backward finite difference 
formulae. The spatial partial derivatives at all other interior nodes were approximated by 
employing the fourth-order central difference formulae. The transient finite difference model for 
the fluid was obtained by employing these equations to approximate all those terms in equations 
(3) involving derivatives with respect to spatial variables. This yields a system of equations of the 
form 
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Figure 2. Discretization of region for finite difference method 

where 

4 , t  = dQ,/dt, 51.1 = d u d &  A = Caijl, 

f;, gl, aij are functions defined in Reference 34, and 

i=2 , .  . . , N ,  j = 2 , .  . . , L, 1= 1, . . . , (N- 1) (L- 1). 

The variable was eliminated from equations (12) by differentiating equation (12c) with respect 
to time, inverting the resulting equation for Y,t and employing this in conjunction with equations 
(12b) and (12c). This yields 

(134 

(13b) 

n('J - 
y(',.i - 

where h, are functions defined in Reference 34. 

and backward finite difference formulae. This yields 

l f t  ) -A@, Y), 

I f f  )-MQ 

The finite difference form of the boundary equations was obtained by employing the forward 

Q(i* l )=O,  i=2 , .  . . , N, (144 

(14b) fl(i.L+1)=115[4gn(i.L)-36nli. L - l ) + 1 6 a ( i . L - 2 ) _ 3 n ( i , L - 3 ) ] ,  i=2, . . . , N ,  
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Y(""=O, 

Y(ipL+l)=O, 

[ ( '* ' )=O,  

i=2 , .  . . , N ,  

i =2 , .  . . , N ,  

i=  1, . . . , N +  1, 

/ y + 1 ) = 0 ,  i =  1, . . . , N +  1, 

(141) 

(14J) 

Q(1pj)=w,R:sin2Bj, j=1 , .  . . , L+1, ( 14k) 

a("+ l ~ j ) =  02R$ sin2 ej, j=  1, . . . , L +  1. (141) 

The final form of the finite difference model (including the boundary equations) for the 
transient case was obtained by combining equations (13) and (14). The general form of this model 
can then be written as 

q k , t  = Gk, (15) 

Table I. Case study designations: (a) prescribed angular velocity problem; (b) impulsive torque problem 

(a) Case I Case I1 Case 111 
R,/R,=0.90 R , / R ,  = 0.50 R1/R,=0.20 

A B A B C D A B 
w , = l  w,=o w , = l  w , = o  w,=-l  w , = l  w , = l  w1 = O  

Re, w,=O w , = l  w,=O w,=l  o,=l w,=-o.5 ' w , = O  w,=l 

100 a-IA-1 a-IB-1 a-IIA-1 a-IIB-1 a-IIC-1 a-IID-1 a-IIIA-1 a-IIIB-1 
500 a-IA-2 a-IB-2 a-IIA-2 a-IIB-2 a-IIC-2 a-IID-2 a-IIIA-2 a-IIIB-2 

1000 a-IA-3 a-IB-3 a-IIA-3 a-IIB-3 a-IIC-3 a-JID-3 a-IIIA-3 a-IIIB-3 
2000 a-IA-4 a-IB-4 a-IIA-4 a-IIB-4 a-IIC-4 a-IID-4 a-IIIA-4 a-IIIB-4 
3000 a-IA-5 a-IB-5 a-IIA-5 a-IIB-5 a-IIC-5 a-IID-5 a-IIIA-5 a-IIIB-5 

Case I Case I1 Case 111 
Rl/R2 =0.50 R,  / R ,  = 0.20 

(b) 
R ,  fR, =0.90 

- J ,  =J,=1.63588 - J , =  J2=4.58045 - J ,  =3.09110El - J ,  = J ,  = 3.01865E3 

A B C D A B A B 
0,(0)=1 w , = O  w,(O)=l Nl=O 0,(0)=1 w , = O  0,(0)=1 w,=O 

Re, w,=O w,(O)= 1 N,=O o,(O)= 1 w,=O w2(0)= 1 w,=O w,(O)= 1 

100 b-IA-1 b-IB-1 b-IC-1 b-ID-1 b-IIA-1 b-IIB-1 b-IIIA-.l b-IIIB-1 
1000 b-IA-2 b-IB-2 b-IC-2 b-ID-2 b-IIA-2 b-IIB-2 b-IIIA-2 b-IIIB-2 
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where 
q=[C2, Y , o ~ ,  oZlT, G=G(IZ, ' t ' , 0 1 , 0 2 ,  t ) ,  k = l , .  . . , 2 ( N - l ) ~ ( L - l ) + 2 .  

The general form of the finite difference model for the steady state problem was obtained by 

(16) 

dropping the transient terms in equation (1  5). This yields 

Gk(Q Y, m1, (02 = 0, 
k =  1 , 2 , .  . . , 2 ( N -  l ) x ( L -  1)+2.  

Numerical solution o f j n i t e  difference models 

The finite difference equations for the steady state problem (equation (16)) were solved iteratively 
by employing Newton's algorithm. The equations for the transient problem (equation (15))  were 
solved by employing the explicit Adam fourth-order predictor-corrector method. This method is 
based on employing the third-order Adams-Bashforth algorithm for the predictor formula and 
the fourth-order Adams-Moulton algorithm for the corrector formula. The necessary starting 
values were obtained by employing the fourth-order Runge-Kutta algorithm. The viscous torque 
(equation (9)) and the angular momentum of the fluid (equation (10)) were evaluated by 
employing Simpson's rule. 

RESULTS 

A computer program was developed to evaluate Q Y ,  T, and L, for each of the case study 
problems. Numerical results were obtained by running this program in double precision for 
various values of the dimensionless parameters. The designations for the different case studies 
which are discussed in this paper are given in Tables I(a) and I(b). Results for other case studies, 
including the constant torque problem, are discussed in Reference 34. Future reference to the 
results obtained from a particular case study will be made by employing the unit code in the 
tables; e.g. a-IA-1 refers to the prescribed angular velocity problem (a) with R l / R z = 0 9 ,  w1 = 1, 
02=Oand  Re2=100.  

Mesh size 

The mesh size required to obtain the desired precision for a specific Reynolds number (Re,) was 
based on the prescribed angular velocity problem, such that at  steady state: (a) the values 
obtained for the dimensionless torques at the inner and outer spheres were equal and opposite; 
and (b) the dimensionless angular momentum for the fluid in the annulus attained a limiting 
value. Results were obtained with decreasing mesh size until both of these conditions were 
satisfied within three significant figures. Tyical results illustrating the effect of mesh size are shown 
in Table 11. In general it was found that the required mesh size decreased with increasing 
Reynolds number and radius ratio R 2 / R  I .  

Results for  prescribed angular velocity problem 

Nume'rical results for R and '4' were obtained as a function of r, 8 and t for all of the case studies 
designated in Table I(a). Typical results for the R and Y contours are shown in Figures 3-11. 
Contour plots for additional case studies can be found in Reference 34. As can be seen, for 
Re,= 100 the contours shown in Figures 3 4  are in close agreement with those obtained by 
Gagliardi.33 Although not shown here, the contours presented in Figures 7-8 are also in good 
agreement with those obtained by other  investigator^.^*'*' However, the contours in Figures 
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Table 11. Effect of mesh size for case a-HA-2 

Mesh size@ x 0) - T ,  T2 LJ 

8 x 8  
l o x  10 
12x 12 
10 x 20 
16x 16 
16 x 20 
16 x 24 
16 x 26 

086469 
082679 
079996 
082614 
0.769 5 5 
0.769 18 
076909 
076909 

056228 
0.62159 
0.67 159 
0.70274 
074106 
076669 
077084 
0.76850 

0.18839 
0.1928 1 
019706 
0.20537 
020397 
020744 
0208 1 1 
0.207 1 1 

- (Yang, et  al)  

Figure 3. Plot of contour lines for Q case study a-IIA-1 (t=@03) 

9 and 10 ( R e ,  = 3000) are in slight disagreement with those obtained by Schultz and Greenspan.’ 
This is probably due to the fact that they employed lower-order finite difference derivative 
formulae. Figure 1 1  illustrates the transient motion in the meridional plane at an early stage. A 
comparison of Figure 1 1  with Figure 7 indicates the development of the fluid motion. 

Values for the viscous torques (T,) for several cases are presented as a function of time in 
Figures 12-14. These figures show that the magnitudes of the viscous torques T ,  and T, attain the 
same asymptotic value at steady state. In general, although not shown in the figures, the time 
required to attain steady state increases with decreasing radius ratio R , / R , .  Figure 12 also shows 
that the values for T, obtained from this investigation are in good agreement with those obtained 
by Gagliardi.33 

The results for the steady state viscous torques (T,) are plotted as a function of the radius ratio 
R J R ,  for R e ,  = 15 and 45 in Figures 15 and 16. The results in these figures are shown compared 
to: (a) the limiting values ( R 2 / R , + 0 0 )  obtained from Dennis et (b) values predicted by the 
Couette flow theory ( R , / R ,  + 1); and (c) values obtained by Gagliardi.33 The values in the figures 
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Figure 4. Plot of contour lines for -Y  x 104;case study a-IIA-1 (t=0.03) 

- (Yang, et  al) 

Figure 5. Plot of contour lines for R, case study a-IIA-1 (steady state) 
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Figure 6. Plot of contour lines for -Y  x lo4; case study a-IIA-1 (steady state) 

Figure 7. Plot of contour lines for -Y x lo4; case study a-IIA-3 (steady state) 
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Figure 8. Plot of contour lines for Y x lo4; case study a-IID-2 (steady state) 

Figure 9. Plot of contour lines for Q case study a-IIB-5 (steady state) 
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Figure 10. Plot of contour lines for Y x lo4; case study a-IIB-5 (steady state) 

Figure 11. Plot of contour lines for -Y  x lo4; case study a-IIA-3 (t=0.005) 
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Figure 12. Plot of viscous torque versus time; case study a-IIA-1 
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Figure 13. Plot of viscous torque versus time; case study a-IID-2 
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Figure 14. Plot of viscous torque versus time; case study a-IIB-5 
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are in good agreement with those obtained by Dennis et aL3' for R2/R ,+co .  These figures 
indicate that an annulus with R J R ,  2 4  (approximately) furnishes a reasonably good represen- 
tation of the flow around a sphere rotating in an infinite medium for cases where Re,  G45. They 
also indicate that the results from this investigation approach those predicted from the Couette 
flow theory as R, /R ,+1  and are in good agreement with those obtained by GagliardP3 when 
R J R ,  G2.5 (approximately). 

A comparison of the steady state torques (T,) obtained by several  investigator^^*^*^^ is shown 
in Tables III(a) and III(b) for case studies a-IIA and a-IIB respectively. It can be seen from these 
tables that the results from this investigation are in fairly good agreement with those obtained by 
the other investigators. 

Results for the impulsive torque problem 

Typical results for contours of R and Y for the impulsive torque problem are shown in Figures 17 
and 18 at t = 0-02. Contours for additional cases can be found in Reference 34. As can be seen, the 
contours shown in these figures are in good agreement with those obtained by Gagliardi.33 In 
general, the results obtained for the impulsive torque problem from this investigation were in 
good agreement with those obtained by GagliardP3 for all cases where Re, G 100. 

Values of the viscous torques (T,) are shown plotted as a function of time in Figures 19 and 20 
for two cases. The figures show that the viscous torque on the outer sphere increases with time 
from zero to a maximum value and then decreases asymptotically back to zero. The corresponding 
plots of the angular velocity (aq) versus time for these cases are shown in Figures 21 and 22. 

Table 111. (a) Comparison of T ,  for case a-ILA. (b) Comparison of T ,  for 
case a-IIB 

Dennis Dennis Munson 
and and and Present 

Re2 Singh' Q~artapel le~~ Joseph5 study 

100 0.446 0.445 0446 0446 
500 0738 0.770 0741 0.769 

1000 0.978 1.039 0.986 1.010 
- - 1.390 2000 1.285 

(b) T2 

Dennis Dennis Munson 

Re2 Singh' Q~artapel le~~ Joseph' study 

100 0.500 0.5 17 0501 0.499 
500 0.7 15 0781 0.720 0.7 16 

1000 0.864 0-928 0863 
2000 1.069 - 1.068 

and and and Present 

- 

- 
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Figure 15. Plot of viscous torque (TI) versus radius ratio; case study a-IIA (Re,  = 15, steady state) 
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1.0 1.6 2.0 2.5 3.0 3.1 4.0 4.5 5.0 
Radius Ratlo 

Figure 16. Plot of viscous torque (TI) versus radius ratio; case study a-IIA (Re ,  =45, steady state) 

- (Yang, e t  al) 

Figure 17. Plot of contour lines for Q case study b-IIB-1 (t =002) 
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Figure 18. Plot of contour lines for Y x lo4; case study b-IIB-1 (t=@02) 
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Figure 22. Plot of angular velocity versus time; case study b-IC-2 

Figure 21 shows that the angular velocity of the inner sphere decays asymptotically from the 
initial value to zero, while Figure 22 shows that the angular velocities of the inner and outer 
spheres attain the same non-zero limiting value asymptotically. Figure 21 also shows that the 
results from this investigation are in good agreement with those obtained by Gagliardi.33 

CONCLUSIONS 

The primary purpose of this research was to study the use of a finite difference method to analyse 
the transient motion of a fluid contained in an annulus between two concentric spheres which are 
started suddenly by prescribed torques. With the approach adopted, only the derivatives with 
respect to spatial variables were approximated by the use of the finite difference derivative 
formulae. This led to a finite difference model comprised of a system of ordinary differential 
equations. This approach proved to be effective in view of the availability of efficient algorithms 
for solving these equations. 
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